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The core structure of straight and curved dislocations is studied by developing a
hybrid approach that links the parametric dislocation dynamics method with
ab initio calculations. The approach is an extension of the Peierls–Nabarro (PN)
model, with the following features: (1) all three components of the displacement
vector for atoms within the dislocation core are included; (2) the entire
generalized stacking fault energy surface (GSFS) obtained from ab initio
calculations is utilized; and (3) the method is generalized to treat curved
dislocations. We combine the parametric dislocation dynamics (DD) approach
for the interaction and motion of dislocations with ab initio calculations of lattice
restoring forces. These forces, which are extracted from the GSFS (�-surface), are
calculated from both first-principles density functional theory (DFT) and the
embedded-atom method (EAM). Dislocation core structures in aluminium and
silver are determined. For straight dislocations, the results from the model are
shown to be in excellent agreement with experiments for both Al and Ag. In
contrast to undissociated dislocation loops in Al, it is found that the core width
and the separations between partials in Ag vary along the angular direction
measured with respect to the Burgers vector. It is also shown that the core-cutoff
radius, which is usually employed in DD calculations to avoid singularities,
must be adjusted as a function of loop size to account for the correct dislocation
core energy.

1. Introduction

Dislocations play a central role in understanding many key phenomena in materials
science and engineering. The traditional description of elastic field and energies of
dislocations is based on continuum theory of linear elasticity that suffers from the
long-standing problem of singularities at the dislocation core. Singular solutions are
often circumvented by introducing an artificial core-cutoff radius. This limits the
applicability of the theory to describe situations where it is important to know the
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strained state and nanoscopic details within a few atomic spacings surrounding the
dislocation centre, known as the dislocation core. There has been a great deal of
interest in describing accurately the dislocation core structure on an atomic scale and
providing a non-singular treatment because of its important role in many
phenomena of crystal plasticity. Computational methods based on direct atomistic
simulations using either empirical interatomic potentials or ab initio calculations
have been used to understand the core properties [1, 2]. Empirical potentials involve
the fitting of parameters to a predetermined database and hence may not be reliable
in predicting the core properties of dislocations, where severe distortions like bond
breaking, bond formation and switching necessitate a quantum mechanical
description of the electronic degrees of freedom. Ab initio total energy calculations
for atoms within dislocation cores, though considerably more accurate, are
computationally very demanding and not tractable at the present time. On the
other hand, continuum methods based on the Peierls–Nabarro (PN) framework have
been the subject of various studies due to their simple and easily accessible hybrid
nature, which essentially establishes a connection between atomic and continuum
length scales [3–8] and offers an attractive alternative to large-scale atomic
simulations.

In the original one-dimensional PN model of a straight dislocation, it is assumed
that the dislocation with Burgers vector b, conveniently represented as a continuous
distribution of infinitesimal dislocations, is confined on a single slip plane (glide
plane) separating two semi-infinite linear elastic continua. The PN equation for the
relative slip displacement, u(x), of the upper half of the crystal with respect to
the lower half at point x (which is the coordinate of the atomic row parallel to the
dislocation line) is obtained by requiring balance of the shearing stresses, due to such
infinitesimal dislocations at x0 and the nonlinear atomic restoring stress �p[u(x)],
acting across the glide plane [9]. The model does have the great merit of providing an
analytical nonlinear elastic solution of a dislocation core, which eliminates the
singularity at the origin [10]. The original PN model is based on an assumed
sinusoidal form for the lattice resistance (known as Frenkel relation [11]), which gives

uðxÞ ¼
b

2
þ

b

�
tan�1 x

�
ð1Þ

where �¼Kb/2�max is the half width of the dislocation core and �max is the maximum
restoring stress.

The model, however, suffers from a serious shortcoming, especially, in modelling
solids with a narrow core (as is typically the case in covalently bonded solids), due to
its unrealistic use of Hooke’s law in the restoring stress calculations at the highly
nonlinear core region [10]. The original PN model has played a dominant role in
recent years after the introduction of the concept of the generalized stacking fault
(GSF) (or gamma-�) surface [12]. The �-surface can be interpreted as the two-
dimensional energy profile when the two crystal halves above and below the glide
plane are shifted rigidly against each other by a constant disregistry vector, u, and
the atoms are allowed to relax normal to the glide plane. For a disregistry vector u,
there is an interfacial restoring stress

FrðuÞ ¼ �rð�ðuÞÞ ð2Þ
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which has the same formal interpretation as the restoring stress in the PN model. The
GSF energies can be calculated using empirical interatomic potentials such as the
embedded-atom method (EAM) and recently, using the electron density functional
theory (DFT) ab initio calculations.

The extension of the original PN model in one dimension embedding specific
information from the GSF energy surface has been carried out by a number of
investigators [6, 7, 13, 14]. In two dimensions, the force balance would require two
complicated coupled integro-differential equations for the slip displacements, which
can be solved numerically by tedious iterative procedures as suggested by [15].
Recently, two methodologies have been proposed in two dimensions to study
dislocation dissociation in metals or alloys. Both approaches require that the total
energy composed of elastic and atomic misfit contributions must be minimized to
obtain the equilibrium structure of the core. In [4], a semidiscrete variational method
(SVM) is presented, where the dislocation energy functional is expressed in terms of
the unknown edge, normal, and screw components of the general interplanar
displacement density at nodal points by an explicit discretization of energy terms. On
the other hand, a concept of Peierls type dislocations was introduced by Schoeck
[16], where the displacement vector is represented by a set of trial functions that
contain a number of adjustable geometrical parameters, whose value is determined
by minimizing the total energy. While these models provide great physical
insights into the analysis of the dislocation core, they are restricted to straight
dislocations so far.

Computational methods based on continuum models to treat dislocation loops
of arbitrary shape are rather sparse. A variational boundary integral method has
been used for the analysis of three-dimensional cracks with arbitrary geometry by
representing them as continuous distributions of dislocation loops [17]. The PN
model enters into this approach by refining the sinusoidal restoring stress law to
study the homogeneous nucleation of dislocations from crack tips [18], and the slip
distribution is obtained by minimizing the total energy. As a result, the model has
not been used for crystals where dislocations are highly dissociative in nature.
It should also be noted that there are several other models that are based on the non-
singular continuum theory of dislocations (e.g. [19–21]), but they do not take into
account any direct information from atomistic calculations. Such models use a
Burgers vector spreading parameter along the dislocation line itself.

In this paper, we present a computationally tractable approach based on the
direct interaction and motion of dislocations, known as dislocation dynamics.
Developed over the past two decades, DD is a direct approach that attempts to
simulate the aggregate behaviour of large dislocation ensembles and holds
considerable promise for uncovering the microscopic origins of crystal strength
[22–26]. We will utilize this powerful tool to obtain the core structure of the original
dislocation which is represented by arrays of Volterra dislocations of infinitesimally
small Burgers vector. The core structure is determined by seeking an equilibrium
configuration of these fractional dislocations via force balance. In general, for a
dislocation of 3-D geometric shape, these forces are of four types: (1) applied
external forces; (2) long-range interaction forces with other dislocations; (3) self-
forces as a result of curvatures of dislocations; and (4) lattice restoring forces
that control separation or sliding across the glide plane, and are determined from
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the � surface. The major advantage of the proposed model is that the interaction
force terms for Volterra dislocations are readily available for a number of classic
problems, e.g. dislocation transmission across interfaces, dislocation interaction with
a precipitate, dislocation cross slip, etc. [27–31]. In order to explore the reliability and
versatility of the approach, we study the core structure of two distinctive fcc metals,
Al and Ag. The gamma surfaces are calculated using both DFT and EAM. The
general trend for the presence or absence of dissociation into partials will be
discussed both for the straight and curved dislocations.

2. Atomistic-dislocation dynamics model

2.1 Straight dislocations

We choose an appropriate right handed coordinate system as shown in figure 1. The
dislocation line vector is along the z-axis and the Burgers vector, perpendicular to the
y-axis, makes an angle � with the z-axis. The Burgers vector is along the x-axis
(�¼ 90

�

) for an edge dislocation and along the z-axis (�¼ 0
�

) for a screw dislocation.
The Burgers vector of a mixed dislocation has both an edge component, be¼ b sin �,
and a screw component, bs¼ b cos �. In general, the atomic displacement vector has
components in all three directions rather than only along the direction of the Burgers
vector. Atomic displacements along the Burgers vector may have to surmount a
higher inter-planar energy barrier in the GSF surface than along alternate directions.
In other words, the GSF energy is reduced when the dislocation acquires additional
displacement components in other directions. For the purpose of this paper, we
assume that the core is confined within the glide plane xz so that the out of plane
displacement component, uy, is ignored. In fact, this assumption is not an over-
simplification in the context of the current problem. The previous calculations using

z

y

b

Glide direction

Dislocation
line

Normal to
glide plane

θ
x

[111]

be

bs

Figure 1. The Cartesian coordinate system used in the simulation showing the relevant
directions for dislocations in Al and Ag.
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a semidiscrete variational model [4] show that this component of displacement is very

small and unimportant for planar dislocations. The other two components of the slip

displacements, ux and uz, are connected to the positions of fractional dislocations of

edge and screw type with fractional Burgers vectors, which are used to represent the

core of the original dislocation using a suitable basis function. The structure of the

dislocation core is obtained by seeking the equilibrium configuration of these

fractional Volterra dislocations. Physically this corresponds to balancing the elastic

forces and the lattice restoring forces across the glide plane as envisioned in the

original PN model.
Consider a mixed dislocation of Burgers vector b ¼ beêþ bsŝ, where ê and ŝ are

unit vectors along the edge and screw directions, respectively. If the Burgers vector

makes an angle � with respect to the dislocation line (y-axis), then be¼ bsin � and

bs¼ bcos �. The displacement field of the original dislocation can be represented as a

superposition of the displacement fields from the fractional dislocations on the same

glide plane:

ue ¼
XN
i¼1

bei tan
�1
�x� xi

�e

�
þ
be

2
ð3Þ

us ¼
XN
j¼1

bsj tan
�1
�x� xj

�s

�
þ
bs

2
ð4Þ

uz ¼ 0: ð5Þ

Here bei ¼ be=N, bsj ¼ bs=N are the Burgers vectors of the fractional dislocations with

a total of N dislocations for each type; xi, xj are their positions on the glide plane,

respectively, and �e, �s are the usual core-cutoff (core width) that are set to half of the

fractional Burgers vector. The elastic force on the ith dislocation of edge type can be

written as

fEi ¼
XN
k6¼i

bei
�

2�ð1� �Þ

1

xi � xk
ð6Þ

On the other hand, the lattice restoring force is given by

fLi ¼ bei
@�

@ue
jx¼xi ð7Þ

Similarly, on the jth dislocation of screw type the elastic force and the lattice

restoring force are given by,

fEj ¼
XN
k6¼j

bsj
�

2�

1

xj � xk
ð8Þ

fLj ¼ bsj
@�

@us
jx¼xj ð9Þ
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The position of the fractional dislocations of edge and screw type are updated within

the setup of dislocation dynamics through the usual relationships

fEi þ fLi ¼ Bvi ð10Þ

fEj þ fLj ¼ Bvj ð11Þ

where vi and vj are the velocities of the edge and screw type dislocations, respectively,

and B is the mobility of the dislocations, which is artificially introduced to update the

position of dislocations at a time step. Simulations are carried out until the velocity

of each fractional dislocation vanishes, i.e. the dislocations glide to their

equilibrium configuration, which ensures that the force equilibrium is achieved.

Equations (10, 11) also suggest that there is always a unique equilibrium

configuration for any given initial configuration. However, the initial configuration

cannot be chosen arbitrarily in order to maintain a low computational time for the

dislocations to reach the equilibrium configuration. As an initial configuration, we

have set a uniform spacing of the fractional dislocations through all simulations.

Once the final positions of the fractional dislocations are known, the components of

the dislocation density can be calculated using (3) as 	e¼ due/dx, 	s¼ dus/dx, to

interrogate the splitting of the core into partials. In order to examine the

displacement or dissociation path (so called minimized energy path) the components

of the displacement vector parallel (ub) and perpendicular (up) to the Burgers vector

can also be calculated using the usual transformation, i.e. ub¼ uesin �þ uscos � and

up¼ uecos �� ussin �.
In order to capture the partial splitting for a pure edge dislocation, a null set,

composed of positive and negative fractional screw dislocations is introduced into

the same glide plane. The number of the positive fractional screw dislocations is

identical to that of the negative fractional screw dislocations so that the net Burgers

vector of the system remains the same. Since there is no cross elastic interaction

between the edge and screw dislocations, they can move independently, as far as the

elastic energy is concerned. Representing different displacement directions, these

edge and screw dislocations could experience very different lattice restoring forces,

depending on the detailed structure of the GSF energy surface. To minimize the total

energy (elastic plus misfit energy) of the system, some of these oppositely signed

screw dislocations may annihilate while the edge dislocations may cluster. The

resultant displacement field due to the original edge dislocation is thus determined by

the superposition of the displacement fields from all fractional dislocations (edge and

screw) present in the simulation. The original edge dislocation dissociates into two

partials if a certain number of screw dislocations survives; the location of the partials

corresponds to where the segregation of the edge dislocations occurs. The procedure

remains the same for the simulation of a perfect screw dislocation, but with

oppositely signed edge dislocations introduced instead. It should be noted that the

final solution does not depend on the basis function (tan�1 type) used in

equations (3). However, the basis function should lead to a smooth curve with

sufficient number of dislocations used in the arrays and thus results in a non-singular

elasticity solution for the core. It should also be pointed out that if the two fractional

dislocations want to approach at distances smaller than the core-cutoff dimension,

4136 S. Banerjee et al.
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the elasticity equations are still used with the core-cutoff width (b/2N) being the
distance between them. It is envisioned that the magnitude of the elastic field exerted
by a fractional dislocation is very small since its burgers vector is also infinitesimally
small, and the overall solution for the core converges as we take the limit of an
infinite number of infinitesimal dislocations. The fact that the core has ‘small
singularities’ is just a computational convenience. It will be shown that the results
from the present approach agrees well with those obtained from the semidiscrete
variational model proposed earlier [4].

2.2 Dislocations loops

The extension of the model to 3D is not trivial, and simplified assumptions,
especially in determining the displacement path, will be made a priori. In fact, such
assumptions come out naturally from the results of straight dislocations with
dissociated or undissociated cores. We briefly describe here the 3D PDD method and
show schematics illustrating our approximation.

In the 3D PDD method each dislocation segment is represented by a parametric
space curve of specified shape functions and associated degrees of freedom. It has
been shown that the evolution equations for the position (P), tangent (T), and
normal (N) vectors at segment nodes are sufficient to describe general 3D dislocation
motion [26]. The resulting sets of ordinary differential equations, describing the
motion of an ensemble of dislocation loops as an evolutionary dynamical system, can
be written in a global matrix form as

FðQÞ ¼ B
dQ

dt
ð12Þ

Here Q represents a set of generalized coordinates, B is the resistivity matrix and the
elements of F(Q) are the force acting on any node, taking into account contributions
resulting from the loop itself (i.e. the self-force), from other dislocations (i.e. the
interaction force), the externally applied force, and the lattice restoring force.
The expressions for the elastic fields can be found in [25] as fast numerical sums over
the loop segments (Ns) and Gaussian quadrature points (Qmax) associated with the
weighting factors (w
). We summarize the results below as necessary. The stress field
is given by

�ij ¼
�

4�

XNs

�¼1

XQmax


¼1

bnw

1

2
R;mpp 2jmn x̂i;uþ 2imn x̂j;u

� �
þ

1

1� �
2kmn R;ijm � �ijR;ppm

� �
x̂k;u

� �

ð13Þ

and the elastic interaction energy is

EI ¼ �
�bð1Þi b

ð2Þ
j

8�

XNð1Þ
s

�ð1Þ¼1

XNð2Þ
s

�ð2Þ¼1

XQð1Þ
max


ð1Þ¼1

XQð2Þ
max


ð2Þ¼1

w
ð1Þw
ð2Þ

� R;kk x̂
ð2Þ
j;u x̂

ð1Þ
i;u þ

2�

1� �
x̂
ð2Þ
i;u x̂

ð1Þ
j;u

� �
þ

2

1� �
R;ij � �ijR;ll

� �
x̂
ð2Þ
k;ux̂

ð1Þ
k;u

� �
ð14Þ
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Here x̂ is the position vector for any point on the parametric segment. If the position
of any other point in the medium is defined as x, then the vector connecting the
source point, x̂, to the field point, x, can be described as R ¼ x̂� x, so that R ¼ kRk.
" is the usual permutation tensor and � is the Kronecker delta.

The lattice restoring force is embedded into the model through (2) after some
simplifications based on the straight dislocation results. It will be shown that the
displacement path tends to be along the Burgers vector direction in case of an
undissociated core, whereas, in case of a dissociated core it tends to follow the
direction of the patrials Burger vector. Since a dislocation loop can be viewed as the
composition of straight dislocation segments, its basic behaviour is presumed to
follow the same rule. Therefore, for an undissociated dislocation loop the restoring
stress profile corresponding to the projection of the DFT energy surface along the
Burgers vector direction is adequate for the present calculations. Similarly, for a
dissociated dislocation loop, the projection of the DFT energy surface along the
partial directions is sufficient. This leads to the constrained path approximation [18],
which has been used elsewhere [17]. Therefore, the slip displacement for each loop
representing the core can be approximated. For example, if N is the total number of
dislocations used to represent the core of an undissociated loop, each having a
Burgers vector b/N, then the slip displacement, ux¼ u, along the Burgers vector
direction (assumed to be x-direction), can be set for each one using the step function
approximation. Note that the other components of the displacements are set to zero
and that the component ux is independent of the angular coordinate, �, in a polar
coordinate representation. Then the lattice restoring forces for each fractional
dislocation loop is fully determined. Similarly, the core of a dissociated loop can be
represented by means of two groups of loop arrays, such that each loop in one group
has a Burgers vector of b1/N1 and in the other group has a Burgers vector of b2/N2,
where b1 and b2 are the dissociated Burgers vectors and N1 and N2 are the number of
dislocations representing each group. In this case, the slip displacements, ux and uy
(say) will have both components, but they are again independent of �. Schematics of
such representations are shown in figure 2

3. Results and discussions

In this section, we present results of calculations of the dislocation core structure for
ideal bulk aluminium (Al) and silver (Ag) crystals. The dislocations are assumed to
be confined in the (111) glide plane with b ¼ 1

2[101] direction. The materials
properties and Burgers vectors for the two crystals are tabulated in table 1.

3.1 Straight dislocations

In order to prove the validity and versatility of the model, we first carry out a
comparative study of the planar dissociation in Al using DFT and EAM gamma
surfaces and verify the results with the SVM and experimental observations

4138 S. Banerjee et al.
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published elsewhere. The results are further extended to Ag using DFT energy
surface to contrast the dislocation structure.

3.1.1 Dislocation structure in Al. The GSF energy surface for displacements along
(111) plane in Al is calculated within the framework of DFT in the local-density
approximation to the exchange-correlation functional using the expression proposed
by Perdew and Zunger [32]. For the EAM calculations of the GSF energy surface,
the Ercolessi–Adams potential is used. The fitted GSF energy surface from the DFT
and EAM, is shown in figure 3.

The three high peaks of the GSF surfaces correspond to the run-on stacking fault
configuration ABCjCABC, in which two C layers are neighbouring each other. The
first energy maximum encountered along the [12�1] direction is the unstable stacking
fault energy, which represents the lowest energy barrier for dislocation nucleation
and the first energy minimum at a0=

ffiffiffi
6

p
(a0 is the lattice constant calculated to be

3.94Å) corresponds to the intrinsic stacking fault configuration, where a full
dislocation dissociates into a pair of Shockley partials. The ISF energy obtained
from the DFT and EAM gamma surface are 0.165 and 0.120 J/m2, respectively. In
both the DFT and EAM calculations, the unstable stacking-fault energy along [101]
is found to be larger than that along [12�1].

Table 1. Materials properties for the FCC lattices used in the simulations.

FCC � (GPA) � b (Ao)

Al 28.8 0.344 2.8053
Ag 33.8 0.354 2.8323

(a) (b)

y

x

y

x

b
b1 b2

b

Figure 2. Schematic representation of the loop arrays for (a) undissociated core,
(b) dissociated core. The orientation of the predefined distributed burgers vectors for each
loop is shown for both cases.

Non-singular descriptions of dislocation cores 4139

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
C
a
l
i
f
o
r
n
i
a
 
L
o
s
 
A
n
g
e
l
e
s
]
 
A
t
:
 
0
9
:
5
4
 
1
0
 
O
c
t
o
b
e
r
 
2
0
0
8



In figure 4, we compare the dislocation density for 90� (edge) and 60�

dislocations utilizing the DFT � surface from the two approaches, namely, the
atomistic-DD model and semidiscrete variational model [4]. The corresponding
dissociation paths (so called minimized energy path) along and perpendicular to the
Burgers vector are also shown in figure 5. Good agreement between the results from
the two approaches are found. Both models using DFT predict no splitting for the
complete dislocation into partials, consistent with experiment [34]. Minor displace-
ment components perpendicular to the Burgers vector (up), however, suggests that a
full dislocation may split into two highly overlapped partials (figure 5).

(a)

(b)

5
0

0.1

0.2

0.3

0.4

0.5

[101]
[121]

E
(J/m2) 

E
(J/m2) 

6
0

0.5

1

1.5

 

[121]
[101]

Figure 3. The GSF energy surface for displacements on a (111) plane in Al in J/m2 (the
corners of the plane and its centre correspond to identical equilibrium configurations, i.e. the
ideal Al lattice) (a) from DFT pseudopotential plane-wave calculations; (b) from EAM
calculations.
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In order to check the convergence of the present model, the number of
dislocations in the array is gradually increased. It is found that a fairly accurate
solution can be obtained using 25 or even fewer dislocations, when compared
with the semidiscrete variational method. The two methods are found to agree
within an average disregistry error of 2.5% for 10, 1.2% for 15, and 0.05% for 25
dislocations. The dislocation core width, defined as the atomic distance over
which u changes from b/4 to 3b/4, are compared in table 2 from the two models
for 25 dislocations. The core width may also be calculated assuming a sinusoidal

Table 2. Comparison of core width in units of b from the semidiscrete
variational method [4] and the present model for straight dislocations.

Method 0o 30o 60o 90o

Semidiscrete 1.5 1.78 2.14 2.5
Present 1.52 1.84 2.18 2.53

(a) (b)

Figure 4. Dislocation density for (a) an edge dislocation and (b) a 60o dislocation obtained
from the two models. A DFT � surface is used in both cases.

(a) (b)

Figure 5. Displacement paths in units of (Å) along and perpendicular to the Burgers vector
direction for (a) an edge dislocation and (b) a 60o dislocation obtained from the two models.
A DFT � surface is used in both cases.
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form of the restoring stress [10]. As indicated by Lu et al. [4], while the first

definition takes into account the entire gamma surface, the second definition

involves only the maximum restoring stress, which can be set equal to the first

maximum of the restoring stress, encountered along the [12�1] direction. However,

the excellent agreement between the values of the core width from the two

definitions suggests that the details of the GSF surface are not important in the

evaluation of the core width.
The results using the EAM gamma surface are displayed in figures 6 and 7. It is

interesting to examine the character of the resultant partials here. The complete edge

dislocation dissociates into two symmetric 60� partials, whereas the 60� dislocation

dissociates into a 30� and a 90� partial. The double-peak structure in the SVM stems

from non-equivalent nodal spacings between neighbouring atomic planes. The fact

that the density of the screw component vanishes at the point where the

edge component reaches its maximum is indicative of the pure edge character

(a) (b)

[1
21

]

[1
21

]

[101] [101]

Figure 7. Displacement paths in units of (Å) along and perpendicular to the Burgers vector
direction for (a) an edge dislocation and (b) a 60� dislocation obtained from the two models.
An EAM �-surface is used in both cases.

(a) (b)

Figure 6. Dislocation density for (a) an edge dislocation and (b) a 60� dislocation obtained
from the two models. An EAM � surface is used in both cases.
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of the 90� partial. In both cases, major displacement components perpendicular to
the Burgers vector are suggestive of full dissociation of the Burgers vector.

In contrast to DFT results and experiment, the EAM calculations predict that
the full edge and 60� dislocations dissociate into partials. Our result for the
dissociation of the full 60� dislocation into partials agrees with direct atomistic
simulations using the same Ercolessi–Adams EAM potential. Although this
agreement indicates the success of the models in predicting the finer core structure,
the result itself is not consistent with the experiment due to the smaller ISF energy
obtained from EAM calculations. It is also interesting to compare our results to
recent atomistic simulations of Mills et al. [33]. Employing the same Ercolessi–
Adams EAM potential, Mills et al. [33] determined the core spreading of the 60�

dislocation, which in turn gives an ISF energy of 0.120 J/m2, in excellent agreement
with our EAM value. Furthermore, these authors conclude that empirical EAM
potentials are not capable of accurately modelling the dissociation of the 60�

dislocation. The successful application of the model to aluminium further proves its
reliability for other materials. We choose Ag for another test.

3.1.2 Dislocation structure in Ag. It has already been justified that the results using
the DFT �-surface predict accurate core structures. Therefore, for Ag we present the
results using the DFT �-surface, which is shown in figure 8. The most striking
difference between the DFT � surfaces of Ag and Al is the large difference in the
intrinsic stacking fault energy, which is only 0.014 J/m2 for Ag. This dramatic
difference in the �-surface gives rise to very different dislocation core structures as
will be seen next. The dislocation density for screw and 30� dislocations are presented
in figure 9. The corresponding dissociation paths are shown in figure 10. Noticeably,
a full screw dislocation tends to dissociate into two 60� partials. The partial
separation distance we obtained from the model calculation is in an excellent
agreement with the TEM measurement [35] and SVM calculations reported earlier
[30] for that in Ag, which is about 20Å. Obviously, the lack of a clear dissociation in

0

0.5

1

1.5

[101]
[121] 

E
(J/m2)

Figure 8. The GSF energy surface for displacements on a (111) plane in Ag in J/m2.
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Al results from the fact that the intrinsic stacking fault energy in Al is much higher
than that in Ag.

3.2 Dislocation loops

3.2.1 Undissociated dislocation structure in Al. Unlike a straight dislocation, an
externally applied stress field is required to stabilize the core structure of a
dislocation loop as a result of the self-force tending to collapse the loop. A uniform
shear stress is applied along the Burgers vector direction (chosen as the x-direction).
For an applied shear stress level, the equilibrium configuration of a nucleated
dislocation loop with Burgers vector, b, is obtained. The core structure of the original
dislocation loop at a given applied shear stress level can now be determined from the
equilibrium configuration of loop arrays of infinitesimally small Burgers vector as
discussed earlier. Note that the schematic representation of figure 2a is used to

(a) (b)

[101] [101]

Figure 10. Displacement paths in units of (Å) along and perpendicular to the Burgers vector
direction for (a) an edge dislocation and (b) a 30� dislocation obtained from the two models.
A DFT � surface is used in both cases.

(a) (b)

Figure 9. Dislocation density for (a) an edge dislocation and (b) a 30� dislocation obtained
from the two models. A DFT �-surface is used in both cases.
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determine the magnitude and orientation of the Burgers vector of the fractional
dislocation loops. The slip displacement, u, constructed from the equilibrium
configuration of the loop arrays and the corresponding dislocation density are shown
in figure 11 for an applied shear stress of 0.018 � (540 MPa).

It is seen that the density is maximum along the screw direction (y-direction)
rather than the edge direction. This illustrates that the screw component of the core is
tighter than the edge component. Since the loop is composed of several segments
(a total of eight segments in the case) connected to each other, a few high density
peaks are observed due to the confinement of these segments. Smooth variations in
the density can be obtained with increasing number of segments, but can be
computationally expensive. Figures 12a and b illustrate the structure of the core
along the x-axis (edge component) and y-axis (screw component), respectively, at
various levels of applied shear stresses. The numbers associated with each curve

x/b

−40
−20

0
20

40

y/b

−40

−20

0

20

40
0

0.5

1

X

YZ

u/b

x/b

−40
−20

0
20

40

y/
b

-40

-20

0

20

40

0

0.5

X

YZ

dux/dr

(a) (b)

Figure 11. (a) The 3D representation of the core structure as a function of the disregistry
vector, u, obtained from the equilibrium configuration of the loop arrays under an applied
shear stress level of 0.018� (540 MPa). (b) Dislocation density obtained from the equilibrium
configuration.

0.018 

0.025 

0.033 
0.045 

0.071 
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0.100 

0.122 

1
(a) (b)
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0.6
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x/b
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0.2

0

1

0.8

0.6

u/b
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0.2

0
−40 −30 −20 −10 100 20 30 40

y/b

−40 −30 −20 −10 100 20 30 40

Figure 12. The (a) edge component (b) screw component of the core structure under various
applied shear stress levels in units of �.
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correspond to the stress levels in units of the shear modulus �. The core widths of the
edge and screw components are found to be 2.0b and 1.4b, respectively, with a
negligible variation up to a certain stress value (e.g. 0.045 �). Above the critical stress
value, the loop size is very small and the core width is undefined due to the
annihilation of the representative loop arrays at the centre of the loop. However,
homogenized spreading of the core is clearly observed above a critical stress
value. The results of our simulations are consistent with earlier theoretical work on
the homogeneous nucleation of small dislocation loops under stress in perfect
crystals [36].

As indicated earlier, one of the main features of the PN model is the absence of
any singularities in the elastic fields. figure 13 shows the distribution of the stress
component, �xy(x, y, 0), obtained from the elasticity solution (original dislocation
loop) and the PN model (dislocation arrays with fractional Burgers vector). The
elimination of the singularity is clearly depicted in figure 13b.

3.2.2 Dislocation energy and core-cutoff radius. It is of interest to compare the self-
energy of the original dislocation loop and its representative core structure. Within
the classical elasticity framework, the self-energy of a single dislocation loop can be
calculated as half the interaction energy (equation 14) between two identical coaxial
dislocation loops of the same Burgers vector separated by a distance r0. The solution
contains a logarithmic divergence of the self-energy, as r0 tends to zero. In a fairly
rough evaluation, r0 is taken as b/2 [37] to ‘subsume’ the core energy into the
elasticity solution without doing any atomistic calculations. Within the PN
framework, the self-energy is calculated from the direct interaction of the dislocation
loop arrays using equation (14), which predicts finite core energies. In figure 14, the
normalized self-energy is plotted against the major axis of the original dislocation
loop from the two models.

The elasticity solution deviates greatly, especially, for large loop sizes. However,
the core contribution can be incorporated into the elasticity solution by adjusting the
value of r0 as presented in figure 15. This is done by setting the elasticity solution

(a) (b)

Figure 13. Comparison of the stress component, �xy(x, y, 0), under an applied shear stress of
0.025 �: (a) the elasticity solution; (b) the PN model.
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equal to the PN solution and ‘calibrating’ ro in the elasticity solution to obtain the
same energy as that of the PN model. The major finding is that the core-cutoff
distance in the elasticity solution varies with the loop size, and tends to saturate for
large loop sizes that suitably resemble the case when the line tension is small. As a
consequence, large-scale dislocation dynamics simulation can account for core
energy effects by adjustment of the cut-off distance with loop size. For example, large
loops in DD simulations would have a cut-off core size of about 2b, while very small
loops would have a core of only b/2. This establishes a physical basis to adjust the
core-cutoff parameter in mesoscopic DD simulations to give consistent energy with
minimum computational effort.

3.2.3 Dissociated dislocation structure in Ag. The dissociative nature of a
dislocation loop in Ag is studied with the goal of understanding the nature of
partial separation. A uniform shear stress is applied along the [101] direction

x/b

0 5 10 15 20 25 30 35
0

2

4

6

8

E
/(

2π
µb

3 )

Figure 14. Variation of the self-energy of the original dislocation loop with r0¼ b/2
(elasticity solution, dashed line) and its representative core structure (PN model, solid line)
versus the loop major axis.

o

Figure 15. Variation of the core-cutoff parameter r0 in the elasticity solution with loop size
to account for the atomistic part of the core energy.
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(chosen as the x-direction) and the equilibrium configuration of the loop arrays is
obtained. The magnitude of the applied stress is 525 MPa and the equilibrium
configuration of the fractional dislocation loops is obtained. Note that for Al the
schematic representation of figure 2a is used to determine the magnitude and
orientation of the Burgers vector of the fractional dislocation loops, whereas, for Ag,
the schematic representation of figure 2b is used. From the equilibrium configura-
tion, the slip displacement, u, can be constructed in a trivial manner as discussed
earlier (see figure 16a). The density of the slip displacement component ux along the
radial direction can now be plotted as shown in figure 16b. A clear separation
between the two groups of partials is obtained in the case of Ag. Noticeably, the
structure of the edge component of the core, which is along the partial Burgers vector
direction for each group, is wider than the screw component.

In order to explore the nature of the dissociation in Ag, we plot the core
separation in polar coordinates in figure 17. The core separation is obtained as the
peak to peak separation of the density plot. It is observed that the core separation
tends to be broader along an axis which is tilted relative to the x-axis. The results of
our simulations for the dissociation can be easily viewed in terms of the approximate
elasticity solution, where only two partials are allowed to separate by the stacking
fault in between, which has been used to resolve an important class of problems [38].
The method adopted in this paper, however, provides a physical basis to resolve the
fine structure of the core within the limits of the PN model and removes any artificial
singularity introduced in the elasticity based solutions.

4. Concluding remarks

A new model is presented to study the core structure of 3D dislocations by
integrating the local atomistic nature derived from atomistic methods into the
computational framework of PDD simulations. For straight dislocations, it is
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Figure 16. (a) 3D representation of the core structure as a function of the slip displacement,
ux, obtained from the equilibrium configuration of the loop arrays under an applied shear
stress level of 525 MPa. (b) Dislocation density obtained from the equilibrium configuration.
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demonstrated that an accurate GSF surface obtained from the ab initio calculations
combined with dislocation dynamics can be used to efficiently predict the
dissociation into partials, and compares well with experiments. In case of dislocation
loops, however, simplifying constrained path assumptions are used to obtain the core
structure. While the SVM was restricted to straight dislocations, the new model is
shown to resolve the approximate nature of the core with minimum commitment to
atomic details for 3D dislocations of arbitrary curvature. The force based method
presented here is computationally inexpensive as well. The method can be used to
study energetics of loop nucleation in perfect crystals. It is shown that the artificially
introduced core-cutoff radius in current dislocation dynamics simulation can be
adjusted as a function of loop size to properly account for the dislocation core
energy. The advantage of the method over classical elasticity is to remove
singularities from the elastic field is clearly demonstrated. The extension of the
model to study dislocation transmission across interfaces in elastic bi-materials is
currently underway [39]. Since the method is applicable to curved dislocations in 3D,
it can be utilized to solve problems that require adequate resolution of the core
structure, such as cross-slip and junction formation. In that case, it might be relevant
to include the out of glide plane displacement component in the simulation.
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